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Machine Learning

• Learning Algorithms/Systems: Performance improvement with 
experience, generalize to unseen input

• Example:
• Face recognition

• Email spam detection

• Market segmentation

• Rainfall forecasting

• Inductive inference – Data to Model
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Machine Learning Models

• Classification
• Predicts category of input objects – predefined classes

• Object recognition in images, email spam detection

• Regression
• Predicts real valued output for a given input

• Predicting value of a stock, predicting number of clicks in an advertisement

• Clustering
• Groups objects into homogeneous clusters – clusters not predefined

• Market segmentation, anomaly detection in industrial plants



Learning Algorithms

• Supervised (predictive data analysis)
• For each input in the training data the desired output is known

• Previous history, ground truth, annotations, labels

• Unsupervised (explorative data analysis)
• Output is not specified

• Natural groups are to be determined

• Semi-supervised
• Supervisory output available for few data points

• Output not available for most data points



Examples of Machine Learning Models

• Classification and Regression
• Logistic Regression
• Bayesian learning
• K-Nearest neighbor
• Decision Tree
• Support Vector Machine
• Boosting – Random Forests, Xgboost
• Neural Networks and Deep Learning

• Clustering
• K-means clustering
• Hierarchical clustering
• DBSCAN



Linear Regression

X

y

Prediction Model: y = 𝑓 𝑋, 𝛽 + ε

𝑓 𝑋, 𝛽 = 𝛽0+ 𝛽1𝑋 + εLinear Regression: Find 𝛽 that minimises the sum squared error



Logistic Regression: Binary Classification
Predict if a student will pass an exam depending on how many hours she has studied

Instead of modeling y, model P(y = 1 | X) = pX

(Logistic function: inverse of logit)

Predict class = 1, if pX > 1 - pX



Computing Parameters of Logistic Regression
𝛽0 :: b, 𝛽1 :: w, σ( ) :: sigmoid

Find values of w, b that minimizes the cross entropy loss:



K Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of an input x are training data points that have the K 
smallest distance to x



K-Nearest Neighbor Classifier

• Find K-nearest neighbors of an input data

• Count class membership of the neighbors and find the majority class

• The majority class is the predicted class for the input

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Predicted class for x according to 3-NN
rule is +

For K-NN regression predict the average
value of the neighbors



Nearest-Neighbor Classifiers: Design Choices

– The value of k, the number of nearest neighbors to retrieve

– Distance Metric to compute distance between data points



Value of K

• Choosing the value of K:
• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other classes

X

Rule of thumb:
K = sqrt(N)
N: number of training points



Distance Metrics



Distance Measure: Scale Effects

• Different features may have different measurement scales
• E.g., patient weight in kg (range [50,200]) vs. blood protein values in ng/L ([-3,3])

• Consequences
• Patient weight will have a greater influence on the distance between samples

• May bias the performance of the classifier

• Transform raw feature values into z-scores

• is the value for the ith sample and jth feature
• is the average of all inputs or feature j
• is the standard deviation of all inputs over all input samples

• Range and scale of z-scores should be similar (providing distributions of raw feature values are alike)   

zij =
x ij - m j

s j

   

x ij

   

m j

   

s j



Nearest Neighbor : Dimensionality
• Problem with Euclidean measure:

• High dimensional data 
• curse of dimensionality

• Can produce counter-intuitive results

• Shrinking density – sparsification effect
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Nearest Neighbour : Computational Complexity

• Expensive
• To determine the nearest neighbour of a query point q, must compute the distance to all N

training examples
+ Pre-sort training examples into fast data structures (kd-trees)
+ Compute only an approximate distance (LSH)
+ Remove redundant data (condensing)

• Storage Requirements
• Must store all training data P

+ Remove redundant data (condensing)
- Pre-sorting often increases the storage requirements

• High Dimensional Data
• “Curse of Dimensionality”

• Required amount of training data increases exponentially with dimension
• Computational cost also increases dramatically
• Partitioning techniques degrade to linear search in high dimension



kd-tree: Data structure for fast range search

• Index data into a tree

• Search on the tree

• Tree construction: At each level we use a different dimension to split
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Bagging (Bootstrapped Aggregation)

Bootstrapping: Sampling with replacement from the original data set



Decision Trees

Leaves denote class decisions, other nodes denote attributes of data points



Decision Tree Construction
Repeat:

1. Split the “best” decision attribute (A) for next node

2. For each value of A, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, STOP,
Else iterate over new leaf nodes

Grow tree just deep enough for perfect classification

–If possible (or can approximate at chosen depth)

Which attribute is best? (Information Gain Maximization)

• Simplified tree construction: At each level use only a small random 
subset of attributes to create descendants



Decision Tree Construction

• Goodness of an attribute: Class distribution of the data subsets after split on the attribute

Class: Yes
Class: No

Entire Data
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Randomization on attributes + Randomization on training data points



Boosting

Data points are adaptively weighted. Misclassified points are emphasised such that the next classifier
Compensates for error of earlier classifier



Adaboost

• Data Point Weight Updates

• Weighted Classifier Combination



Forward Stagewise Additive Modelling

Adaboost FSAM for exponential loss.



Gradient Boosting 

• Gradient Descent + Boosting   

Error term indicate inadequacy of the model

Residual

Model residual with another classifier M2. And append it to M1.

Continue over iterations

M1 additively compensates inadequacy of M1

Residual = negative gradient

Iterative process a gradient descent



Gradient Boosting



Gradient Boosting for Regression

• We have a set of variables vectors x1 , x2 and x3. You need to predict 
y which is a continuous variable.

• Steps of Gradient Boost algorithm
Step 1 : Assume mean is the prediction of all variables.
Step 2 : Calculate errors of each observation from the mean (latest prediction).
Step 3 : Find the variable that can split the errors perfectly and find the value 
for the split. This is assumed to be the latest prediction.
Step 4 : Calculate errors of each observation from the mean of both the sides of 
split (latest prediction).
Step 5 : Repeat the step 3 and 4 till the objective function maximizes/minimizes.
Step 6 : Take a weighted mean of all the classifiers to come up with the final 
model.



XGBoost: eXtreme Gradient Boosting

• Gradient Boosting + Regularization



Clustering

• Finding groups of objects such that the objects in a group will be 
similar (or related) to one another and different from (or unrelated 
to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Clustering Algorithms
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K-Means Clustering

• Partitional clustering approach 

• Each cluster is associated with a centroid (center point) 

• Each point is assigned to the cluster with the closest centroid

• Number of clusters, K, must be specified



K-Means Iterations
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