



# Introduction to Machine Learning Algorithms

Pabitra Mitra

Indian Institute of Technology Kharagpur

pabitra@cse.iitkgp.ac.in

## Machine Learning

- Learning Algorithms/Systems: Performance improvement with experience, generalize to unseen input
- Example:
  - Face recognition
  - Email spam detection
  - Market segmentation
  - Rainfall forecasting
- Inductive inference Data to Model

#### Machine Learning



# Machine Learning Models

- Classification
  - Predicts category of input objects predefined classes
  - Object recognition in images, email spam detection
- Regression
  - Predicts real valued output for a given input
  - Predicting value of a stock, predicting number of clicks in an advertisement
- Clustering
  - Groups objects into homogeneous clusters clusters not predefined
  - Market segmentation, anomaly detection in industrial plants

## Learning Algorithms

- Supervised (predictive data analysis)
  - For each input in the training data the desired output is known
  - Previous history, ground truth, annotations, labels
- Unsupervised (explorative data analysis)
  - Output is not specified
  - Natural groups are to be determined
- Semi-supervised
  - Supervisory output available for few data points
  - Output not available for most data points

# Examples of Machine Learning Models

- Classification and Regression
  - Logistic Regression
  - Bayesian learning
  - K-Nearest neighbor
  - Decision Tree
  - Support Vector Machine
  - Boosting Random Forests, Xgboost
  - Neural Networks and Deep Learning
- Clustering
  - K-means clustering
  - Hierarchical clustering
  - DBSCAN

#### Linear Regression



Prediction Model:  $y = f(X, \beta) + \epsilon$ 

Linear Regression:  $f(X,\beta) = \beta_0 + \beta_1 X + \epsilon$ 

Find  $\beta$  that minimises the sum squared error

#### Logistic Regression: Binary Classification

Predict if a student will pass an exam depending on how many hours she has studied

| Hours | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25 | 3.50 | 4.00 | 4.25 | 4.50 | 4.75 | 5.00 | 5.50 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Pass  | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 1    | 1    | 1    | 1    | 1    |

Instead of modeling *y*, model  $P(y = 1 | X) = p_X$ 



$$logit(p_X) = \log\left(\frac{p_X}{1-p_X}\right) = \beta_0 + \beta_1 X$$
$$\log\left(\frac{p_X}{1-p_X}\right) \text{ is called the logit function}$$
$$p_X = \frac{e^{\beta_0 + \beta_1 X}}{1+e^{\beta_0 + \beta_1 X}} \text{ (Logistic function: inverse of logit)}$$
$$\lim_{x \to -\infty} \frac{e^x}{1+e^x} = 0 \text{ and } \lim_{x \to \infty} \frac{e^x}{1+e^x} = 1, \text{ so } 0 \le p_x \le 1.$$

Predict class = 1, if  $p_X > 1 - p_X$ 

#### Computing Parameters of Logistic Regression

 $\beta_0 :: b, \beta_1 :: w, \sigma() :: sigmoid$ 

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$= \frac{e^{-(w \cdot x + b)}}{1 + e^{-(w \cdot x + b)}}$$

Find values of w, b that minimizes the cross entropy loss:

$$L_{CE}(w,b) = -[y\log\sigma(w\cdot x+b) + (1-y)\log(1-\sigma(w\cdot x+b))]$$

Difference between the model prediction and the correct answer y

 $\frac{\partial L_{CE}(w,b)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$ 

Feature value for dimension j

#### K Nearest Neighbors



(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of an input x are training data points that have the K smallest distance to x

#### K-Nearest Neighbor Classifier

- Find K-nearest neighbors of an input data
- Count class membership of the neighbors and find the majority class
- The majority class is the predicted class for the input



Predicted class for x according to 3-NN rule is +

For K-NN regression predict the average value of the neighbors

#### Nearest-Neighbor Classifiers: Design Choices

- The value of k, the number of nearest neighbors to retrieve
- Distance Metric to compute distance between data points

# Value of K

- Choosing the value of K:
  - If k is too small, sensitive to noise points
  - If k is too large, neighborhood may include points from other classes





#### **Distance** Metrics

**Minkowsky: Euclidean:** Manhattan / city-block:  $D(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{\frac{1}{r}} \qquad D(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} |x_i - y_i|$ **Camberra:**  $D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$  **Chebychev:**  $D(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{m} |x_i - y_i|$ **Quadratic:**  $D(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T Q(\mathbf{x} - \mathbf{y}) = \sum_{j=1}^m \left( \sum_{i=1}^m (x_i - y_i) q_{ji} \right) (x_j - y_j)$ Q is a problem-specific positive definite  $m \times m$  weight matrix V is the covariance matrix of  $A_1..A_m$ , Mahalanobis: and  $A_i$  is the vector of values for  $D(x, y) = [\det V]^{1/m} (x - y)^{T} V^{-1} (x - y)$ attribute *j* occuring in the training set instances 1..n. Dirrelation:  $D(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{m} (x_i - \overline{x_i})(y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x_i})^2 \sum_{i=1}^{m} (y_i - \overline{y_i})^2}}$ **Correlation:**  $\overline{x_i} = \overline{y_i}$  and is the average value for attribute *i* occuring in the training set. sum<sub>i</sub> is the sum of all values for attribute **Chi-square:**  $D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} \frac{1}{sum_i} \left( \frac{x_i}{size_{\mathbf{x}}} - \frac{y_i}{size_{\mathbf{y}}} \right)^2$ *i* occuring in the training set, and  $size_x$  is the sum of all values in the vector x. Kendall's Rank Correlation:  $D(x,y) = 1 - \frac{2}{n(n-1)} \sum_{i=1}^{m} \sum_{j=1}^{i-1} \operatorname{sign}(x_i - x_j) \operatorname{sign}(y_i - y_j)$ sign(x) = -1, 0 or 1 if x < 0,x = 0, or x > 0, respectively.

Figure 1. Equations of selected distance functions. (x and y are vectors of m attribute values).

#### Distance Measure: Scale Effects

- Different features may have different measurement scales
  - E.g., patient weight in kg (range [50,200]) vs. blood protein values in ng/L ([-3,3])
- Consequences
  - Patient weight will have a greater influence on the distance between samples
  - May bias the performance of the classifier
- Transform raw feature values into z-scores  $Z_{ij} = \frac{X_{ij} M_j}{S_i}$ 
  - $\mathcal{X}_{ij}$  is the value for the *i*<sup>th</sup> sample and *j*<sup>th</sup> feature

  - *M*<sub>j</sub> is the average of all inputs or feature *j S*<sub>j</sub> is the standard deviation of all inputs over all input samples
- Range and scale of z-scores should be similar (providing distributions of raw feature values are alike)

# Nearest Neighbor : Dimensionality

- Problem with Euclidean measure:
  - High dimensional data
    - curse of dimensionality
  - Can produce counter-intuitive results
  - Shrinking density sparsification effect



# Nearest Neighbour : Computational Complexity

#### • Expensive

- To determine the nearest neighbour of a query point q, must compute the distance to all N training examples
  - + Pre-sort training examples into fast data structures (kd-trees)
  - + Compute only an approximate distance (LSH)
  - + Remove redundant data (condensing)

#### Storage Requirements

- Must store all training data P
  - + Remove redundant data (condensing)
  - Pre-sorting often increases the storage requirements
- High Dimensional Data
  - "Curse of Dimensionality"
    - Required amount of training data increases exponentially with dimension
    - Computational cost also increases dramatically
    - Partitioning techniques degrade to linear search in high dimension

# kd-tree: Data structure for fast range search

- Index data into a tree
- Search on the tree
- Tree construction: At each level we use a different dimension to split





# Bagging (Bootstrapped Aggregation)



Bootstrapping: Sampling with replacement from the original data set

#### **Decision Trees**

Survival of passengers on the Titanic



Leaves denote class decisions, other nodes denote attributes of data points

## Decision Tree Construction

■ Repeat:

1. Split the "best" decision attribute (A) for next node

2. For each value of *A*, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, STOP, Else iterate over new leaf nodes

■ Grow tree just deep enough for perfect classification

-If possible (or can approximate at chosen depth)

Which attribute is best? (Information Gain Maximization)

 Simplified tree construction: At each level use only a small random subset of attributes to create descendants

#### Decision Tree Construction

• Goodness of an attribute: Class distribution of the data subsets after split on the attribute



#### **Random Forest Simplified**



Randomization on attributes + Randomization on training data points

# Boosting



Data points are adaptively weighted. Misclassified points are emphasised such that the next classifier Compensates for error of earlier classifier

#### Adaboost

• Data Point Weight Updates

$$\alpha_m = \log\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$$
$$w_i^{(m)} = w_i^{(m-1)} \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$$

Hence:

$$w_i^{(m)} = \begin{cases} w_i^{(m-1)} & \text{if } g_m \text{ classifies } x_i \text{ correctly} \\ w_i^{(m-1)} \cdot \frac{1 - \text{err}_m}{\text{err}_m} & \text{if } g_m \text{ misclassifies } x_i \end{cases}$$

• Weighted Classifier Combination 
$$f(x) = sign\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

#### Forward Stagewise Additive Modelling

FSAM: For m = 1, ..., M, find model  $f_m$  by minimizing the empirical risk

$$f_m = \arg\min_{h \in \Phi} \frac{1}{n} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

• 
$$f^{(m-1)}(x) = \sum_{j=1}^{m-1} f_j(x)$$
, with  $f^{(0)}(x) = 0$ 

- For some model class  $\Phi$
- A very general procedure, but hard to do for general loss function

Adaboost FSAM for exponential loss.

#### Gradient Boosting

Gradient Descent + Boosting

 $y_i = M_1(x_i) + \varepsilon_{1i}$  Error term indicate inadequacy of the model  $e_{i1} = y_i - M_1(x_i)$  Residual

Model residual with another classifier M2. And append it to M1.

 $e_{i1} = M_2(x_i) + \varepsilon_{2i}$  Continue over iterations

 $\hat{y}_i = M_1(x_i) + M_2(x_i)$  M1 additively compensates inadequacy of M1

$$\frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} = \frac{\partial \left[\frac{1}{2}(y_i - f(x_i))^2\right]}{\partial f(x_i)} = f(x_i) - y_i$$

Residual = negative gradient

$$\begin{aligned} f_b(x_i) &= f_{b-1}(x_i) + M_b(x_i) \\ &= f_{b-1}(x_i) + (y_i - f_{b-1}(x_i)) \\ &= f_{b-1}(x_i) - 1 \times \frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} \\ &= f_{b-1}(x_i) - \eta \times \nabla j(y_i, f(x_i)) \end{aligned}$$

Iterative process a gradient descent

#### Gradient Boosting



# Gradient Boosting for Regression

• We have a set of variables vectors x1 , x2 and x3. You need to predict y which is a continuous variable.

#### • Steps of Gradient Boost algorithm

Step 1 : Assume mean is the prediction of all variables.

Step 2 : Calculate errors of each observation from the mean (latest prediction).

*Step 3* : Find the variable that can split the errors perfectly and find the value for the split. This is assumed to be the latest prediction.

Step 4 : Calculate errors of each observation from the mean of both the sides of split (latest prediction).

Step 5 : Repeat the step 3 and 4 till the objective function maximizes/minimizes. Step 6 : Take a weighted mean of all the classifiers to come up with the final model.

#### XGBoost: eXtreme Gradient Boosting

• Gradient Boosting + Regularization

Introduced regularization directly in the tree growing procedure

- Actually tries to minimize,  $L(y_i, f^{(m-1)}(x_i) + h(x_i)) + \Omega(h)$ ,
- $\Omega(f) = \gamma T + \frac{1}{2}\lambda \sum_{j}^{T} w_{j}^{2} + \alpha \sum_{j}^{T} |w_{j}|$ , for  $w_{j}$  the leaft values of tree of size T
- Also other regularization parameters available

# Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



### Clustering Algorithms







Partitional Clustering



**Hierarchical Clustering** 

#### K-Means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
  - 1: Select K points as the initial centroids.
  - 2: repeat
  - 3: Form K clusters by assigning all points to the closest centroid.
  - 4: Recompute the centroid of each cluster.
  - 5: **until** The centroids don't change

#### **K-Means Iterations**





#### References



Springer Texts in Statistics Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Description Springer